Benninger receives $3.5M in NIH research grants to study diabetes

?????????Richard Benninger, Assistant Professor in the Department of Bioengineering, has been awarded two NIH Research Project (R01) grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). These two grants are to the amount of $1,749,375 and $1,749,375 in total costs, each over 5 years. Each research project grant focuses on studying the islets of Langerhans and their dysfunction in different forms of diabetes. Diabetes, a disease that afflicts close to 400M people world-wide, is characterized by a loss of glucose homeostasis which can lead to many diabetic complications including blindness, kidney disease, cardiovascular disease and limb amputations. Almost all cases of diabetes results from dysfunction to the insulin secreting beta cells in the islets of Langerhans, leading to insufficient secretion of the hormone insulin which regulates blood glucose homeostasis. Most treatments for diabetes therefore aim to prevent, restore or replace the disrupted secretion of insulin.

The first R01-funded project entitled “Emergent multi-cellular properties regulating pancreatic islet function” will apply quantitative fluorescence microscopy approaches, optogenetics and computational modelling to examine the cell signaling dynamics underlying insulin secretion from the islets of Langerhans. Specifically this project will focus on characterizing functional sub-populations of beta cells and determining how specific subpopulations of cells can exert disproportionate control over multiple functions of the islet through coupled dynamic processes; in healthy conditions and diabetic conditions caused by single gene mutations.

The second R01-funded project entitled “Multicellular interactions and dynamics of pancreatic islet function in diabetes” will examine dysfunction to the islets of Langerhans and regulation of insulin secretion during the progression of type2 diabetes. Specifically this project will focus on the important role of gap junction channels which mediate electrical communication between insulin-secreting beta cells. This includes characterizing the role of gap junction channel disruption in islet dysfunction during the progression of type2 diabetes, and determining ways gap junction coupling can be modulated to prevent the decline in beta cell mass and recover glucose-stimulated insulin secretion.

Together these projects will examine different ways that the function of the islets of Langerhans are disrupted in diabetes and discover strategies in which islet function can be restored; towards developing new treatments for different forms of diabetes.

Park Awarded 3rd NIH Exploratory/Developmental Research (R21) Grant

Park

Daewon Park, assistant professor of bioengineering, received an R21 grant from the National Eye Institute with his research titled “A Functional Reverse Thermal Gel for Retinal Ganglion Cell Axon Regeneration.” With this grant, Dr. Park will develop a bioinspired neurotrophic factor-releasing system for the regeneration of damaged retinal ganglion cell axon. This research will provide a platform of material-based treatment methodology of neural protection and regeneration.

Congratulations!

Nikki Farnsworth receives F32 Postdoctoral Individual National Research Service Award

Farnsworth_pic Nikki Farnsworth, a postdoctoral fellow mentored by Richard Benninger in the Department of Bioengineering, has been awarded a 3-year F32 fellowship from the National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) totaling $165,354. Nikki will study the dysregulation of pancreatic islet electrical activity during conditions associated with the progression of type1 diabetes, and ways to control this regulation to protect against beta cell decline.

Engineering colleagues awarded NIH grant to develop spinal cages

Mechanical Engineering Assistant Professors Christopher Yakacki and Dana Carpenter have received a National Institutes of Health (NIH) Exploratory/Developmental Research Grant Award (R21) to develop spinal cages.

Yakacki and Carpenter have partnered to establish the Smart Materials and Biomechanics Lab to discover new biomedical materials and to investigate uses for biomedical devices.

This new funding of more than $348,000 is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases. It is for their project “Porous, Patient Specific Interbody Fusion Cages with Enhanced Loading Characteristics to Reduce Subsidence”

The research interests of these colleagues complement one another: Yakacki studies the materials used to build devices, and Carpenter uses imaging techniques to create models of the devices and test their functionality.

To obtain a clinical perspective, the pair also collaborates with colleagues in the CU School of Medicine. Vikas Patel, associate professor in orthopaedics, and Andriy Noshchenko, a research assistant in orthopaedics, play an integral part in
the development of these devices. As the “end users”, their perspective is key to developing a successful, useful product.

Typically, spinal cages are made with titanium, carbon fiber epoxy or grafted tissue from a donor. However, Yakacki has found a polymer called polyparaphenylene that maintains strength when made into a porous material.

Through digital models of the spine, Carpenter is able to determine load distributions, and then uses imaging software to insert the device into the modeled spine to see how it will work.

The researchers say with this approach, they can simulate the amount of bone that will be absorbed, the mechanics of the bone and how it will interact with the device – over time.